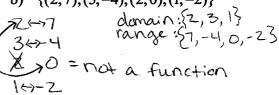
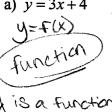
INTERMEDIATE ALGEBRA

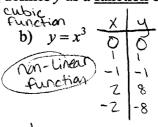
2.1 FUNCTIONS AND THEIR REPRESENTATIONS

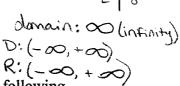

NAME: Kelly Fenton

Useful Definitions:

- * A <u>relation</u> is a set of ordered pairs. For example: $\{(-1,4),(-3,5),(1,2),(7,-2)\}$
- * A function is a relation in which, for each value of the first component of the ordered pairs. there is exactly one value of the second component.
- * In a relation, the set of all values of the independent variable is the domain; the set of all values of the dependent variable is the range.
- * Vertical Line Test: If every vertical line intersects the graph of a relation only once, the relation is a function.
- 1. State whether each relation defines a function and give the domain and range.

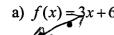

a)
$$\{(-1,4),(-3,5),(1,2),(7,-2)\}$$

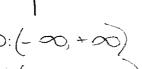

b)
$$\{(2,7),(3,-4),(2,0),(1,-2)\}$$



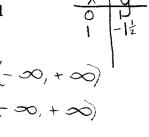
2. Use "vertical line test" to check whether each relation defines y as a function of x. Give the $^{\times}$ domain.

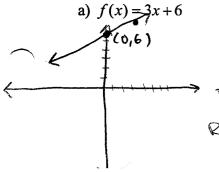
a)
$$y = 3x + 4$$

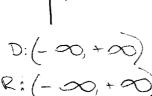



- 3. Let f(x) = -2x + 3 and $g(x) = -\frac{1}{4}x^2 + 3x + 1$. Find the following.
- a) f(1) = -2(7+3=1)
- c) f(m) = -2(m) + 3 = -2m + 3
- e) f(x+1) = -2(x+1) + 3

- b) $g(-2) = -\frac{1}{4}(-2)^{2} + 3(-2)^{4}$ $-\frac{1}{4}(-1)^{2} + 3(-2)^{4}$ d) $g(-x) = -\frac{1}{4}(-x)^{2} + 3(-x) + 1$ e) $g(-k) = -\frac{1}{4}(-k)^{2} + 3(-k) + 1$
- 4. For each function, find f(1) and f(-2).
- a) $f = \{(-2,4),(3,6),(1,0),(7,2)\}$ t(i)=0 F(-2)=4


- b) $f = \{(1,2), (-3,0), (-2,9), (4,2)\}$
- 5. Graph each linear function. Give the domain and range. Label the function and the points.





b)
$$g(x) = -\frac{1}{2}x + 1$$

- INTERMEDIATE ALGEBRA

GPS #7

2.2 LINEAR FUNCTIONS

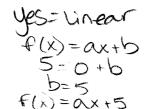
NAME: Kelly Fenter

Useful Guidelines:

*Linear Function: f(x) = ax + b [Example: f(x) = 4x - 3, a = 4 and b = -3]

Its graph is a straight line. For each unit increase in x, f(x) changes by an amount equal to g(x)

- * Rate of Change for a Linear Function: The output of a linear function changes by a constant amount for each unit increase in the input.
- * When data have a constant rate of change, they can be modeled by f(x) = ax + b. The constant a represents the rate of change, and the constant b represents the initial amount or the value when x = 0.

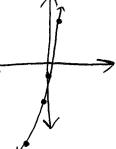


- 1. Determine whether f is a linear function. If f is linear, give values for a and b so that f may be expressed as f(x) = ax + b.
- b) $f(x) = x^{2} 2$

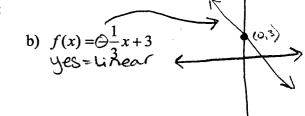
c) f(x) = 50a=0 b=50 yes=linear

- d) $f(x) = \sqrt{x} + 4$ f(x) = x(x) + 4
- 2. Use the table to determine whether f(x) could represent a linear function. If it could, write the formula for f in the form f(x) = ax + b.
- a)

x	0	1	2	3
f(x)	5	7	9	11


,		
1F/x)=	7x	+5
11/		, ,

7	,
_	->


b)

x	-2	-1	0	1
f(x)	-20	-11	-2	7

$$f(x)=ax+b$$
 $f(x)=ax+b$
 $+2=0+b$ $7=a(i)-2$
 $b=-2$ $1=a-2$
 $f(x)=ax-2$ $(a=a)$

- 3. Evaluate f(x) at x = 0 and x = -3 for the following:
- a) f(x) = 3x + 3yes = linear (v, 3)

GPS#8

2.3 THE SLOPE OF A LINE

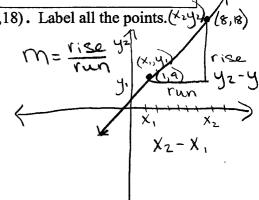
NAME: Kelly Fenter

Useful Guidelines:

* The slope of a line through the points (x_1, y_1) and (x_2, y_2) is (x_1, x_2)

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{rise}{run}$$
 $(x_1 \neq x_2)$. "Slope Formula"

* The slope-intercept form of the equation of a line with slope m and y-intercept b is y = mx + b



1. Graph and find the slope of a line through the points (1,9) and (8,18). Label all the points. (4,8) Find an equation of the line containing the given pair of points.

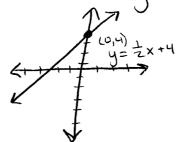
$$M(slope) = \frac{y_2 - y_1}{x_2 - x_1}$$

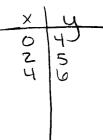
$$= \frac{18 - 9}{8 - 1}$$

$$M = \frac{9}{7}$$

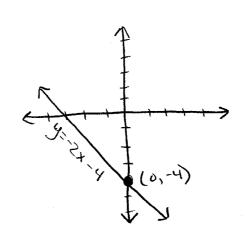
2. Find the equation in slope-intercept form of the line satisfying the given conditions.

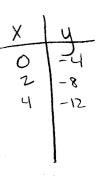
a) slope 4; y-intercept
$$(0,9)$$
 $y = y \times y$
 $y = y \times y$


b) slope
$$-\frac{7}{4}$$
; y-intercept (0,-2)



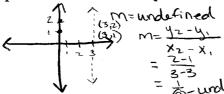
3. For each equation, write it in slope-intercept form, give the slope of the line, give the yintercept, and graph the line. Label the line and all the points. $Q = m \times + b$


a)
$$-x+2y=8$$
 (Solve for y)


$$\frac{Zy}{2} = \frac{x+8}{z}$$
 | $\frac{510pe}{M} = \frac{1}{2}$
 $y = \frac{x}{2} + \frac{8}{2}$ | $y - int = (0, 4)$
 $y = \frac{1}{2}x + 4$

b)
$$3y+6x=-12$$

 $3y=-0x-12$ (slope)
 $y=-2x-4$ (slope)
 $y=-2$

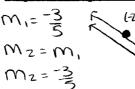

INTERMEDIATE ALGEBRA

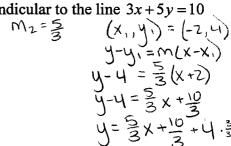
2.4 EQUATIONS OF LINES AND LINEAR MODELS

NAME: Relly Fentan

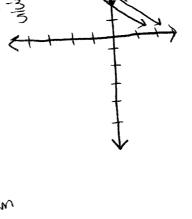
Useful Guidelines:

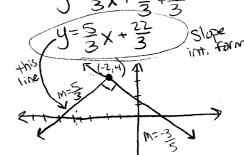
- * The slope-intercept form of the equation of a line with slope m and y-intercept b is
- * The point-slope form of the equation of a line with slope m passing through the point (x_1, y_1) is $y - y_1 = m(x - x_1)$
- * The standard form of the equation of a line: ax + by = c
- * Two lines with the same slope are parallel: $m_1 = m_2$
- * Two lines with nonzero slopes m_1 and m_2 are perpendicular when $m_1 \cdot m_2 = -1$ or $m_2 = -\frac{1}{m_1}$
- 1. Graph the equation. What is the slope?
- a) x = 3


2. Does the point (2,48) lie on the line y


- 3. Using the point-slope form to find an equation of the line that satisfies the given conditions. Write the equation in slope-intercept form and in standard form.
- a) Through (6, 1); slope $-\frac{1}{3}$ $y-y_1 = m(x-x_1)$
- b) Through (-3,-2); slope $-\frac{4}{3}$
- 3. Find an equation of the line passing through the point (-2, 4) and
- a) parallel to the line 3x + 5y = 10
- b) perpendicular to the line 3x + 5y = 10

[Write each equation in slope-intercept form.] save for y


1 Point


$$y = -3x + 10$$
 $m_z = -3$
 $\sqrt{+7}$ slope $m_z = -3$

4-4=m(x-x)

