INTERMEDIATE ALGEBRA

1.3 INTEGER EXPONENTS

Yarry Pater

Useful Definitions and Rules: For all integers m and n and all real numbers a and b:

* Exponential Expression: $2^4 = 2 \cdot 2 \cdot 2 \cdot 2$ (4 factors of 2), $3^5 = 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3$ (5 factors of 3),

 $a^5 = a \cdot a \cdot a \cdot a \cdot a$ (5 factors of a), $a^n = a \cdot a \cdot a \cdot a \cdot a \cdot a$ (n factors of a)

* Product Rule: $a^m \cdot a^n = a^{m+n}$

* Quotient Rule: $\frac{a^m}{a^n} = a^{m-n}$

- * Power Rules: $(a^m)^n = a^{mn}$; $(ab)^m = a^m b^m$

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}(b \neq 0)$$

A number is in scientific notation when it is written as a product of a number between

1 and 10 (inclusive of 1) and an integer power of 10. For example: 2.35×10^{10}

Assume all variables represent nonzero real numbers for the following:

1. Evaluate the following:

a)
$$2^3 = 2 \cdot 2 \cdot 2 = 8$$

b)
$$(-3)^4 = -3 \cdot -3 \cdot -3 \cdot = 3$$

c)
$$-4^3 = -Cu)(y)(y)$$

d)
$$\sqrt{25} \neq \sqrt{5^2} = 5$$

1. Evaluate the following:
a)
$$2^3 = 2 \cdot 2 \cdot 2 = 8$$

b) $(-3)^4 = -3 \cdot -3 \cdot -3 = 3 = c$
c) $-4^3 = -6 \cdot 4$
d) $\sqrt{25} = \sqrt{5^2} = 5$
e) $\sqrt[3]{8} = (2^3)^{\frac{1}{2}} = 2$
f) $\sqrt{\frac{16}{9}} = \frac{106}{\sqrt{3}} = \frac{4^2 \cdot 4}{\sqrt{3}} = \frac{4}{3}$

a)
$$4^5 \cdot 4^2 = 4^3 = 4^3$$

2. Apply the product rule for exponents, if possible, in each case.

a)
$$4^5 \cdot 4^2 = 4^7$$

b) $7^3 \cdot 7^9 \cdot 7^2 = 7^{(3+9+2)} = 7^{(4+9+2)}$

c)
$$(-4x^3)(6x^2) = -4 \cdot x^3 \cdot \zeta \cdot x^2$$

= $-24x^5$

d)
$$(2x^5)(y^2) = 2x^{-5} \gamma^2$$

3. Apply the quotient rule for exponents and write each result using only positive exponents. $\frac{1}{100}$ a) $\frac{2^5}{100}$ = $2^{(5-3)}$ = 2

a)
$$\frac{2^5}{2^3} = 2^{(5-3)} = 2^2 = 4$$

b)
$$\frac{7^{-2}}{7^8} = 7^{(-2-8)} = 7^{-10} = 7^{10}$$

c)
$$\frac{x^8}{x^3} = \frac{(8-3)}{5}$$

d)
$$\frac{y^4}{y^{-2}} = \gamma^{(4-(-2))} \gamma^6$$

3. Use one or more power rules to simplify each expression.

(y⁵)² =
$$y^{1/2}$$

(b)
$$(x^{-2})^3 = 5$$

Power a)
$$(y^5)^2 = y^{10}$$

Power c) $(3x)^4 = 34x^4 = 81x^4$

d)
$$\left(\frac{6}{-5}\right)^2 = \frac{6^2}{-5^2} = \frac{36}{28}$$

4. Evaluate and simplify each expression so that no negative exponents appear in the final result

- b) $2x^0 y^0 = 2(1) 1 = 2 1 = 1$
- 200 a) $-(-7)^0 = -(1) = -1$ Negro c) $(2k^{-1})^4 = \left(\frac{2}{k^{+1}}\right)^4 = \frac{2^4}{k^4} = \frac{16}{k^4}$
- d) $\left(\frac{6x^{-2}}{x^{-3}}\right)^2 = \left(\frac{2x^3}{x^2}\right)^2 = \left(6x^3 2\right)^2 = \left(6x^7\right)^2 = 36x^3$
- 5. Write each number in scientific notation.
 a) $3600 = 3.6 \times 10^{3}$ c) $0.000896 = 8.96 \times 10^{-4}$

b) $-790,000 = -7.9 \times 10^{5}$ d) $-0.0000555 = -5.55 \times 10^{5}$