INTERMEDIATE ALGEBRA

GPS # 7

2.2 LINEAR FUNCTIONS

NAME: Kelly Fenter

Useful Guidelines:

POL HAY

*Linear Function: f(x) = ax + b [Example: f(x) = 4x - 3, a = 4 and b = -3]

Its graph is a straight line. For each unit increase in x, f(x) changes by an amount equal to g(x)

- * Rate of Change for a Linear Function: The output of a linear function changes by a constant amount for each unit increase in the input.
- * When data have a constant rate of change, they can be modeled by f(x) = ax + b. The constant a represents the rate of change, and the constant b represents the initial amount or the value when x = 0.

A.D.

1. Determine whether f is a linear function. If f is linear, give values for a and b so that f may be expressed as f(x) = ax + b.

a)
$$f(x) = -3x - 2$$
 $0 = -3$
 $0 = -2$
 $(-3,0)$
 $(-2,0)$
 $(-3,0)$
 $(-2,0)$

b)
$$f(x) = x^2 - 2$$

c)
$$f(x) = 50$$

 $b = 50$ yes=linear

d)
$$f(x) = \sqrt{x} + 4$$

 $F(x) = x(x) + 4$

2. Use the table to determine whether f(x) could represent a linear function. If it could, write the formula for f in the form f(x) = ax + b.

a)

\boldsymbol{x}	0	1	2	3
f(x)	5	7	9	11

	, (,,		, , ,	W	=()		
x	-2	-1	0	1			
f(x)	-20	-11	-2	7			
F	(x)=a	C+X	F(x)=ax+b				
12=0+6			7=a(1)-Z				
(b=-2)			1=a-z				
FIX	D=AX	-7					

3. Evaluate f(x) at x = 0 and x = -3 for the following:

a)
$$f(x) = (3x + 3)$$

 $yes = linear$
 $f(0) = (3)$
 $f(-3) \neq (2)$

