INTERMEDIATE ALGEBRA

GPS # 9 2.4 EQUATIONS OF LINES AND LINEAR MODELS

Useful Guidelines:

* The slope-intercept form of the equation of a line with slope m and y-intercept b is y = (mx + (b)) + (nx)

* The point-slope form of the equation of a line with slope m passing through the point (x_1, y_1) is $y - y_1 = m(x - x_1)$

* The standard form of the equation of a line: ax + by = c

* Two lines with the same slope are parallel: $m_1 = m_2$

* Two lines with nonzero slopes m_1 and m_2 are perpendicular when $m_1 \cdot m_2 = -1$ or $m_2 = -\frac{1}{m_1}$.

1. Graph the equation. What is the slope?

a)
$$x=3$$

$$\begin{array}{c}
x=3 \\
(3,2) \\
(3,2)
\end{array}$$

$$\begin{array}{c}
x=4z-y \\
x_2-x, \\
-\frac{2}{3}z^2
\end{array}$$

2. Does the point (2,48) lie on the line y = 20x + 8?

3. Using the <u>point-slope form</u> to find an equation of the line that satisfies the given conditions. Write the equation in <u>slope-intercept form</u> and in <u>standard form</u>.

a) Through (6, 1); slope
$$-\frac{1}{3}$$
 $y-y_1 = m(x-x_1)$

$$y+\frac{1}{3}x=3$$

$$3(y+\frac{1}{3}x)=3(3)$$

$$3y+x=9 \text{ (standard)}$$
form

b) Through (-3,-2); slope $-\frac{4}{3}$ $y-(-2)=-\frac{4}{3}(x-(-3))$ $x = -\frac{4}{3}$ $y+2=-\frac{4}{3}(x+3)$ $y+2=-\frac{4}{3}x-4$ (slope of $y+\frac{4}{3}x=-4$) $y+\frac{4}{3}x=-4$

3. Find an equation of the line passing through the point (-2, 4) and

a) parallel to the line 3x + 5y = 10

y= -3x-5+4.8==8

1 point

b) perpendicular to the line 3x + 5y = 10

