2.2 SOLVING QUADRATIC EQUATIONS II

NAME: ALEXANDYA JONES

Class Time: 11:30-12:45 Date: 2-5-08

Useful Guidelines:

The solutions of $ax^2 + bx + c = 0 (a \ne 0)$ are given by $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$. "Quadratic Formula"

If a, b, and c are integers, then the number and type of solutions can be predicted as follows:

- * If the discriminant $b^2 4ac > 0$, then we'll have two real solutions.
- * If the discriminant $b^2 4ac = 0$, then we'll have only one real solution.
- * If the discriminant $b^2 4ac < 0$, then we'll have two complex solutions.
- 1. Solve each equation using the quadratic formula and give the solution set.

a)
$$x^{2}-x-12=0$$

$$-(-1) \pm \sqrt{-(1)^{2}-4(1)(-12)}$$

$$0=1$$

$$2(1)$$

$$0=1$$

$$2=1 \pm \sqrt{1+48} = 1 \pm \sqrt{49} = 1 \pm 7$$

$$2$$

$$\frac{1\pm 7}{2} = 50iution \ set!$$

$$(4, -3) \ or \ \{x \mid x=4, -3\}$$

b)
$$2x^{2}-3x+3=0$$

 $0=2$ $-(-3)^{\frac{1}{2}}\sqrt{(-3)^{2}-4(2)(3)}$
 $0=-3$ $2(2)$
 $0=3$ $= 3+\sqrt{9-24} = 3+\sqrt{15}$
 $= 3+i\sqrt{15}$
Solution set:
 $\{X \mid X=\frac{3+i\sqrt{15}}{4}, X=\frac{3-i\sqrt{15}}{4}\}$

2. Use the discriminant to predict whether the solutions to each equation are A. one real solution; B. two real solutions; C. two complex solutions.

a)
$$x^2+5x+4=0$$

 $(5)^2-4(1)(4)$
 $25-16=9$
 $970,50$
B. TWO real solutions
c) $5x^2-3x+7=0$
 $(-3)^2-4(5)(7)$
 $9-140=-131$
 -13140 So,
C. TWO complex solutions

b)
$$2x^2-4x+2=0$$

 $(-4)^2-4(2)(2)$
 $16-16=0$
 $0=0,50$
A. One real Solution.
d) $x^2+3x-1=0$
 $(3)^2-4(1)(-1)$
 $9+4=13$
 $13>0$ So,
B. TWO real Solutions

3. If a ball is thrown upward at 32 feet per second from a height of 6 feet, the height of the ball can be modeled by $S(t) = 6 + 32t - 8t^2$ feet, where t is the number of seconds after the ball is thrown. How long after the ball is thrown is the height 36 feet?

$$S(t) = 6t 32 t - 8t^{2}$$

 $36 = 6t + 32t - 8t^{2}$
 $8t^{2} - 32t + 30 = 0$
 $2(4t^{2} - 16t + 15) = 0$
 $4t^{2} - 16t + 15 = 0$

$$S(t) = 6 + 32 t - 8t^{2}$$
 $0 = 4$ $(2t - 3)(2t - 5) = 6$
 $36 = 6 + 32t - 8t^{2}$ $6 = -16$
 $t^{2} - 32t + 30 = 0$ $t^{2} - 16$
 $t^{2} - 32t + 15 = 0$ $t^{2} - 16t + 15 = 0$