## 2.7 INVERSE FUNCTIONS

## **Useful Guidelines:**

- \* One-to-one function: A function whose inverse is also a function. [If  $x_1 \neq x_2$ , then  $f(x_1) \neq f(x_2)$ ]
- \* Horizontal-line test: If every horizontal line intersects the graph of f in at most one point, then f is one-to-one.
- \* The graph of a function f and its inverse  $f^{-1}$  are symmetric with respect to the line y = x.
- \* To find the inverse,  $f^{-1}(x)$ , of a one-to-one function:
  - (1) Let y = f(x)
  - (2) Interchanging the variables x and y
  - (3) Solve for y and replace y by  $f^{-1}(x)$
  - (4) Check the result by showing that  $f^{-1}(f(x)) = x$  and  $f(f^{-1}(x)) = x$
- \* To find the range of a one-to-one function f, find the domain of the inverse function  $f^{-1}$ .

[Domain of  $f = \text{Range of } f^{-1}$ ; Range of  $f = \text{Domain of } f^{-1}$ .]

1. Determine whether the given function is one-to-one. If it is one-to-one, find the inverse.

[Hint: Check to see if there are ordered pairs with different first coordinates and the same second coordinate. If there are, the function is not one-to-one. We can find its inverse by interchanging the x- and y-coordinates in each ordered pair.]



(b)  $\{(-2,4),(0,0),(2,4),(4,16)\}$ Not a one-to-one function There is no inverse function



2. Use the graph to determine whether the function is one-to-one. [Hint: use Horizontal-line test]





3. In the following problems, determine whether the function f is one-to-one. If it is, find the inverse of each function.









