2.7 INVERSE FUNCTIONS II

NAME: AMONCICI (CIC) Class Time: 1130-12; 45 Date: 2/19/08

Useful Guidelines:

- * One-to-one function: A function whose inverse is also a function. [If $x_1 \neq x_2$, then $f(x_1) \neq f(x_2)$]
- * <u>Horizontal-line test</u>: If every horizontal line <u>intersects</u> the graph of f in at most <u>one point</u>, then f is <u>one to-one</u>.
- * The graph of a function f and its inverse f^{-1} (read as f inverse) are symmetric with respect to the line y = x.
- * To find the inverse, $f^{-1}(x)$, of a one-to-one function:
 - (1) Let y = f(x)
 - (2) Swap the variables x and y
 - (3) Solve for y and replace y by $f^{-1}(x)$
 - (4) Check the result by showing that $f^{-1}(f(x)) = x$ and $f(f^{-1}(x)) = x$
- * To find the range of a one-to-one function f, find the domain of the inverse function f^{-1} .

[Domain of $f = \text{Range of } f^{-1}$; Range of $f = \text{Domain of } f^{-1}$.]

- 1. Given f(x) = 50x and $g(x) = \frac{x}{50}$, find the following:
- a) f(g(x)) + (30) = 50(30) = x

a) $f(g(x)) f(\frac{1}{50}) = 50(\frac{1}{50}) = x$ g(f(x)) = f(g(x)) > Triverses of each otherb) $g(f(x)) g(50x) = \frac{5}{50} = x$ f(g(x)) = g(f(x)) = g(f(x))

Determine whether the pair of functions f and g are inverses of each other.

Yes, they are inverses of each other

- 2. If $f(x) = 50x^3 18$ and $g(x) = \sqrt[3]{\frac{x+18}{50}}$, find the following:
- a) $f(g(x)) = Y(\frac{1}{3}) \times \frac{18}{50} = (50)(\frac{3}{3}) \times \frac{18}{3} = Y$

g(f(x))=f(g(x)) Inverses of each other

b)
$$g(f(x))$$
 $g(50x^3-18) = -\frac{3}{50}x^2-18+18 = 2$

Determine whether f(x) and g(x) are inverse functions.

Yes, they are inverses of each other Both = x

3. Determine the function is one-to-one. If it is one-to-one, find a formula for its inverse and check the result by showing that $f^{-1}(f(x)) = x$ and $f(f^{-1}(x)) = x$

$$f(x) = \frac{7}{x} \quad \text{fill}(x) = ?$$

it is a function, Its a one-to-one function

A(F'(x)=+(=)====X チー(f(x))=f-(を)==x

They are inverse functions of each other