2.7 INVERSE FUNCTIONS II

NAME: BOOK Bennett Class Time: 11:30 Date: 2-19-08

po Ab.

Useful Guidelines:

- * One-to-one function: A function whose inverse is also a function. [If $x_1 \neq x_2$, then $f(x_1) \neq f(x_2)$]
- * <u>Horizontal-line test</u>: If every horizontal line <u>intersects</u> the graph of f in at most <u>one point</u>, then f is <u>one-to-one</u>.
- * The graph of a function f and its inverse f^{-1} (read as f inverse) are symmetric with respect to the line y = x.
- * To find the inverse, $f^{-1}(x)$, of a one-to-one function:
 - (1) Let y = f(x)
 - (2) Swap the variables x and y
 - (3) Solve for y and replace y by $f^{-1}(x)$
 - (4) Check the result by showing that $f^{-1}(f(x)) = x$ and $f(f^{-1}(x)) = x$
- * To find the range of a one-to-one function f, find the domain of the inverse function f^{-1} .

[Domain of $f = \text{Range of } f^{-1}$; Range of $f = \text{Domain of } f^{-1}$.]

1. Given f(x) = 50x and $g(x) = \frac{x}{50}$, find the following:

a)
$$f(g(x)) = f\left(\frac{x}{50}\right) = 50\left(\frac{x}{50}\right) = x$$

b) f(x) g(f(x)) $g(50x) = \frac{50x}{50}$

Determine whether the pair of functions f and g are inverses of each other.

I dince 9(F(x))=x and F(9(x))=x,

> they are inverses of each other

2. If $f(x) = 50x^3 - 18$ and $g(x) = \sqrt[3]{\frac{x+18}{50}}$, find the following:

a) $f(g(x)) = F(\sqrt[3]{x+18}) = 50(3)\sqrt[3+18]{x+18})^2 - 18 = 1$

 $bf'(x) = 9(50x^3-18) = 3\sqrt{\frac{50x^3-18+18}{50}} = x^{1}$

Determine whether f(x) and g(x) are inverse functions. inverses of each other.

3. Determine the function is one-to-one. If it is one-to-one, find a formula for its inverse and check the result by showing that $f^{-1}(f(x)) = x$ and $f(f^{-1}(x)) = x$ $f(x) = \frac{7}{x}$ reciprical function $\frac{1}{x}$ they are inverses of each other.

 $F(F'(x)) = F(3) = \frac{7}{3} = X$ $F'(F(x)) = F'(3) = \frac{7}{3} = X$

v. gnd.

@F-1(x)= %