* Kichar think of Mina * am = am-1 * **COLLEGE ALGEBRA** NAME: HOLLY GOSPER Class Time: 7176 11:30 Date: 3-4-08 **GPS # 26 EXPONENTIAL FUNCTIONS II** 3.1 * The Base e is defined as the number that the expression $\left(1+\frac{1}{n}\right)^n$ approaches as n becomes very large.

(1) $(1)^n$ $(1)^n$ (* In limit notation, $e = \lim_{x \to \infty} \left(1 + \frac{1}{n}\right)^n$. * Exponential equations: Equations that involve terms of the form a^x , where a > 0 and $a \neq 1$. * Property of the exponents: If $a^u = a^v$, then u = v. [Note: To solve exponential equations, each side of the equation must be written in the same base.] 1. Begin with the graph of $f(x) = e^x$ and use transformation to graph each function. Determine the y-intercept, domain, range, and horizontal asymptote of each function. (a) $f(x) = e^{-x} = (\frac{1}{e})^x$ $f(x) = -e^x$ HA= 4=0 HA: Y=0 $P: (-\infty, \infty)$ $R: (0, \infty)$ D: (-0,00) R: (-00,0) Yinter: (0,1) Yinter: (0,-1) (c) $f(x) = e^{-x} - 5 = (\frac{1}{2})^{x} - 5$ H.A .: Y = 0 Y inter: (0,-e2) D: (-2,00) R: (-5,00) D: (-0,0) Yinter: (0,-4) R: (-20) ecay(e) $f(x) = 3e^{-x} = 3(\frac{1}{e})^{x}$ $f(x) = -e^{2x} + 3$ (0,3) Yintercept: (0,3) H.A: Y=3 $g:(-\infty,\infty)$ 1 inter: (0,2) D: (-00,00) HA : Y=0 $R:(-\infty, 3)$ 2. Solve each equation. (b) $2^{x^2-21} = 16$ (a) $5^{4x-3} = 25$ bux-3= x2 4x-3=2 2x2-21= x4 x2-21=4 +21 +21 1x2 =125 X= = X= ± 5 (d) $e^{x^2} = \frac{e^{10}}{e^{3x}}$ (c) $k^{-x^2} = k^{6x-7}$ $-x^2 = 6x-7$ 8x2= & 10-3x $\frac{\pm \chi^2 + \chi^2}{0}$ $x^2 = 10 - 3x$ X2+3X-10=0 (x+7)(x-1)=0