1.4 **EQUATIONS OF LINES** NAME: HOLY Cosper Class Time: TIR 11: 30 Date: 1-10-08

Useful Guidelines:

- * The slope-intercept form of the equation of a line with slope m and y-intercept b: y = mx + b
- * The point-slope form of the equation of a line with slope m passing through the point (x_1, y_1) : $y - y_1 = m(x - x_1)$

- * The general form or standard form of the equation of a line with slope m and y-intercept b: ax + by = c
- * Average rage of change of f(x) with respect to x over the interval from x = a to x = b:
- * The difference quotient: $\frac{f(x+h)-f(x)}{h}$
- 1. Find the equation in slope-intercept form of the line satisfying the given conditions.

a) slope 4; y-intercept (0,9)
$$\sqrt{=4 \times +9}$$

b) slope
$$-\frac{7}{4}$$
; y-intercept (0,-2)
$$\sqrt{=-\frac{1}{4}} - Q$$

- 2. Using the point-slope form to find an equation of the line that satisfies the given conditions. Write the equation in slope-intercept form and in standard form.
- a) Through (6, 1); slope $-\frac{1}{3}$ points of $y = -\frac{1}{3}$ b) Through (-3,-2); slope $-\frac{4}{3}$ points of $y = -\frac{1}{3}$ and $y = -\frac{1}{3}$ points of $y = -\frac{1}{3}$ b) Through (-3,-2); slope $-\frac{4}{3}$ points of $y = -\frac{1}{3}$ and $y = -\frac{1}{3}$ b) Through (-3,-2); slope $-\frac{4}{3}$ b) Through (-3,-2); slope $-\frac{4}{3}$ b) $y = -\frac{1}{3}$ and $y = -\frac{1}{3}$ b) Through (-3,-2); slope $-\frac{4}{3}$ b) $y = -\frac{1}{3}$ and $y = -\frac{1}{3}$ b) Through (-3,-2); slope $-\frac{4}{3}$ b) $y = -\frac{1}{3}$ and $y = -\frac{1}{3}$ b) $y = -\frac{1}{3}$ corresponds to $y = -\frac{1}{3}$ corresponds to y =

b) Write an equation in standard form of the line passing through the points (3, 2) and (3, -2) (ver hear)

- 5. a) Find the difference quotient for the function f(x) = 3x 5 and simplify it. f(x+h) f(x) = 3(x+h) 5 = 3x + 3h 5 2x + 3h
 - b) Find the difference quotient for the function $f(x) = x^2 + 2$ and simplify it. t(x+n)-t(x) [(x+n)s+3]=[xs+3xn+ns+x]-[xs+x] $=\frac{2xh+h^2}{1}=\frac{\lambda(2x+h)}{2x+h}=\frac{\lambda(2x+h)}{2x+h}$